我们以空间分布的模式来举例,一般来说,有三种,分别是离散的、随机的、和聚合的。
离散的概念就是指观测的每个数据之间的差异程度,离散程度越大,差异性就越大。
聚合与离散正好相反,表示在一定区域内的相关程度,就是聚合程度越大,相关性就越大。
零假设(null hypothesis),有时候又称原假设,官方的解释是:指进行统计检验时预先建立的假设。也就是说,你在检验你的结果之前,先对这些结果假设一个数值区间,这个区间一般是符合某种概率分布的情况,如果你的真实结果偏离了你设定的区间,就表示发生了小概率事件。这样你原来的假设就不成立了。
p值(P-Value,Probability,Pr),代表的是概率。它是反映某一事件发生的可能性大小。在空间相关性的分析中,p 值表示所观测到的空间模式是由某一随机过程创建而成的概率。比如我说,你计算出来的p值是1,那就表示你用于计算的这份数据,100%是随机生成的了(当然,不可能是1的,0.5以上就也不得了)。如果是0.1,就表示只有10%的可能性是随机生成的结果。
z得分(Z scores)表示标准差的倍数(standard deviations)。z得分,就是标准差的倍数(有正负之分),比如z得分是+2.5,就表示你的数据计算出来,得到的结果是标准差的正2.5倍,那么就表示数据已经高度聚集了。反之,如果你算出来的是-2.5,那么就表示你的结果是标准差的负2.5倍,就是高度离散的数据了。