反距离加权插值IDW方法的原理?
使用一组采样点的线性权重组合来确定像元值。权重是一种反距离函数。进行插值处理的表面应当是具有局部因变量的表面。
方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。例如,为分析购物点对消费者的表面进行插值处理时,在较远位置都买影响较小,这是因为人们更倾向于在家附近购物。
反距离权重 (IDW) 插值显式假设:彼此距离较近的事物要比彼此距离较远的事物更相似。
由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重法。
反距离权重 (IDW) 插值使用一组采样点的线性权重组合来确定像元值。权重是一种反距离函数。进行插值处理的表面应当是具有局部因变量的表面。此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。反距离权重 (IDW) 插值可以明确地验证这样一种假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重。
反距离权重 (IDW) 插值可以明确地验证这样一种假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重。
反距离权重 插值使用一组采样点的线性权重组合来确定像元值。权重是一种反距离函数。进行插值处理的表面应当是具有局部因变量的表面。此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。反距离权重 可以明确地验证这样一种假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重。